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ABSTRACT. A polytope P is called a face polytope if it is considered
together with a fan F such that every cone in F is spanned by a face
of P. The paper proves a theorem that can be treated as an interme-
diate value theorem for face polytopes. According to this theorem if all
fans Fs obtained from a fan F by replacing one of its cones K with
a subdivision S of K in some set H are polytopal, then the fan F is
polytopal as well. Moreover, if Ps, S € H, are arbitrary face polytopes
of the fans Fs then some positive combination of Ps, § € H, is a face
polytope of the fan F. The reverse of the theorem is not true.

1. INTRODUCTION

A fan is though of as a finite set of pointed polyhedral cones where any two
cones meet each other in a proper face of both. The common apex of cones
of a fan is assumed to be the origin. We study fans in a relation to polytopes
called polytopality. This relation arises when all cones of a fan are spanned
by faces of a polytope. The fan itself is called in this case polytopal and the
polytope a face polytope. It does matter what faces span cones. We follow [3]
and restrict the spanning faces of a face polytope by back faces, which are
defined as follows.

Definition 1. Let P be an n-dimensional polytope in R%, 0 < n < d, let F be
an m-dimensional face of P, 0 < m < n, and let v be any point in R?. We
say that the face F is a back face of the polytope P with respect to the point v
if there is a hyperplane H passing though F such that the polytope P without
the face F' and the point v lie in the same open halfspace determined by H.

We consider back faces with respect to the origin only, so we omit most
of the words and call them simply back faces. One can find that a face of a
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Abstract: A new method of approximating fixed points of continuous maps is proposed. This
method is based on coverings of spaces with a finite number of cones. Because of finite nature
of coverings, we obtain an approximation of fixed points with integer labels. Using the proposed
approximation in fixed points algorithms leads to robust programming and fast computing.

1. INTRODUCTION

A fixed point of a function f is a point z such that f ()=
z. Fixed points appear in many application, especially
arising in economic area. In these application fixed points
represent equilibria and the existence of fixed points is
generally derived from Brouwer’s theorem Brouwer [1912].

Brouwer’s theorem can be proved constructively via well-
known KKM lemma Knaster et al. [1929], but generally
this constructive proof is not very fast numerically. The
matter is that KKM lemma generates a sequence of
simplices from a known simplex to a wanted simplex with
given properties.

When applied to Brouwer’s theorem this wanted simplex
turns out to be an approximation of a fixed point. This
is quite perfect theoretically, but following a sequence of
simplices numerically slows down any procedure one can
imagine to reach an approximation of a fixed point this
way.

The situation worsens dramatically as the dimension of the
studying problem increases. In spaces of high dimension a
simplex can be thought of as a turtle of hundreds legs.
Moving one leg, that is, moving one vertex of a simplex,
keeps the entire simplex in almost the same place.

As a consequence, in high dimensions an algorithm needs
an enormous number of steps just to move yourself from
one place to another. Of course, some techniques of com-
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Fig. 1. An approximation with three vector labels.
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Fig. 2. An approximation with two vector labels.

putation (see van der Laan and Talman [1979, 1981]
and also Yang [1999]) diminish occasionally this effect.
However the entire problem is still remained basically
untouched.

In the following we propose a solution to this problem
by introducing a new method of approximating fixed
points with integer labels. Comparing the new method
with the known one that uses vector labels, we show that
approximating with integer labels is much preferable for
computing.

2. TYPICAL VECTOR LABELLING

In the case of vector labelling (see Todd [1976]) each vertex
z of any simplex receives the label I(z) = f(z) — . A fixed
point algorithm finds a wanted simplex whose vertices
Z1,...,Tqd41 carry labels I(x1),...,(zd+1) such that the

system of equation
d+1
Y., ellz) =0

has a nonnegative solution aj,...,ap,, = 0.

In other words, a fixed point alorithm finds a simplex
with labels [(z1), . . ., [(za+1) such that zero belongs to the
convex hull of I(z;), ..., l(za+1) (see Fig. 1). Now suppose
that the found simplex is small enough. In view of f is
continuous this means that all labels I(z1), . .., l(z44+1) are
almost the same. Hence they are all small enough because
otherwise their convex hull would not possess zero.
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Abstract: Cube corners are used widely in position detecting devices. A cube corner is attached
to an object of interest. Then the position of the object is determined as the distance and two
angles of direction to the cube corner. Recent developments make it possible to use a cube corner
to detect the orientation of an object as well. However orientation cannot be measured directly,
instead it should be recovered from other data. The paper introduces a method of calculating
the orientation of a cube corner and shows that the method has an accuracy restricted by the
accuracy of direct measurements only. Hence it detects orientation angles of a cube corner up

to arc seconds.

Keywords: High accuracy pointing; Guidance, navigation and control of vehicles; Trajectory

tracking and path following

1. INTRODUCTION

Cube corners return any light ray hitting them in exactly
the opposite direction. This feature makes cube corners
used widely in position detecting devices. A cube corner
is attached to an object of interest. Then the position of
a cube corner is determined as the distance to the cube
corner and two angles of direction. Recent developments
allow determining not only the position but also the
orientation of a cube corner.

Provided a sufficient accuracy, applications of determining
orientation are rich and welcome. It suffices to mention
measuring hidden objects, controlling manipulations of
robots, directing spacecrafts towards docks and so on.
One of the problems bounding these applications is that
the parameters determining the position of an object are
measured directly, while the parameters determining the
orientation of an object need to be calculated from other
data.

To do this calculation, one should choose a set of pa-
rameters (angles) that will describe the orientation of an
object, then develop another set of parameters (measured
data) that depend on the parameters in the first set and
can be measured directly, and finally find a numerical
method that will recover the parameters in the first set
from the parameters in the second. The method should be
simple enough to admit unmanned usage and have a good
accuracy.

The paper concerns two approaches to detecting orienta-
tion. One approach can be found in Bridges et al. (2010). It
is based on viewing an image of the cube corner edges near
the apex obtained by the projection alone the optical axis.
The other approach is initiated in Matveev (2014). It again
uses the projection alone the optical axis but analyzes
an image of the entire light flow returned by the cube
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corner. We present a method of calculating orientation
angles developed for the second approach and show that
the method is simple, accurate and fast enough.

2. ORIENTATION VIA AN IMAGE OF THE CUBE
CORNER EDGES NEAR THE APEX

Bridges et al. (2010) describes the orientation of a cube
corner by three angles of rotation about the three axes of
a coordinate system defined as in Figure 1. The z axis of
the coordinate system is chosen alone the outer normal
to the cube corner entrance facet. The three reflecting
surfaces of the cube corner meet each other in three lines
of intersection. The zy plane is defined as passing though
the z axis and one of the intersection lines. The zy plane
contains the y axis, which is perpendicular to the z axis.
The z axis is perpendicular to both = and y axes.

g

Fig. 1. A coordinate system to use with P, Y, and R angles
of orientation
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